
ELASTIC SCATTERING OF SLOW ELECTRONS 

BY TWO-ELECTRON IONS 

M. R. C. McDowell 

February 19 68 

X- 641-68- 60 
PREPRINT 

GODDARD SPACE FLIGHT CENTER 
Greenbelt, Maryland 



ELASTIC SCATTERING O F  SLOW ELECTRONS 

BY TWO-ELECTRON IONS 

M. R. C. McDowell 

ABSTRACT 

A one channel model, previously used for He, is extended to allow calcula- 

tion of elastic scattering by H- and Li at energies up to three rydbergs. Non- 

separable ground state wave functions are used, allowance being made for ex- 

change, and dipole and quadrupole polarization potentials. Results for Li a re  

in good agreement with quantum defect method values. Calculated differential 

c ross  sections for elastic scattering by H- at energies of one half and one 

rydberg a re  presented. Deviations from Couloumb scattering are marked. 
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ELASTIC SCATTERING O F  SLOW ELECTRONS 

BY TWO-ELECTRON IONS 

M. R. C. McDowell*' 
NASA-Goddard Space Flight Center 

Greenbelt, Maryland 

I. Introduction 

A considerable number of theoretical investigations on elastic scattering 

of slow electrons by He atoms1-4 have been reported recently. They are  in 

substantial agreement with each other, and a re  consistent (in the sense of dis- 

persion relations3) with experimental d a t a . 5 ~ ~  In view of advances in experi- 

mental technique which have allowed measurement ' * of inelastic collision cross  

sections of slow electrons with H- (in good agreement with theoryg) it is of in- 

terest to examine elastic scattering by two electron ions. 

In this paper the model of Williamson and McDowell2 has been extended and 

applied to elastic scattering by H- and by Li at energies up to 3 Ry. The theory 

is outlined in Section 11, and the numerical methods employed a re  discussed in 

Section ID. Phase shifts and scattered intensities a r e  presented in Section IV, 

+ 
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i- 
and in the case of Li compared with the result of a Hartree-Fock calculation10, 

and the quantum defect method. 

II. Theory 

We consider an electron scattered by a two electron system of charge z. 

The total three electron system is described by the Schrijdinger equation, 

(H - E) \I' (1 ,  2, 3 )  = 0 

with Hamiltonian operator* 

3 

H =  ( - i V : - L )  + 1 r . .  

i > j  l J  
'i i= l  

In our model the total wave function (123) is represented by an ansatz, 

( 1 , 2 , 3 )  = +o ( 1 , 2 )  F ( 3 )  S (123)  (3 ) 
1,2,3 

where $o (1, 2)  is a wave function for the ground state of the target when elec- 

trons 1 and 2 are  bound, S (123) is a spin function, and F (3) the unknown scat- 

tering function to be determined, and the sum is over cyclic permutations. 

"All quantities wi l l  be given in atomic units, the unit of energy being the Rydberg, 13.565 e V .  
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Taking 

where a,P are  the one-electron spin up and spin down functions, we may write, 

in  a usual notation 

the position vector of electron 3 with respect to the target nucleus being 

r3  = ( r 3 ,  8, , +3) and p3 = cos8,. 

The integrodifferential equation for the scattering functions f t  ( r 3 )  is ob- 

tained by projecting out (1) on each partial wave in turn, 

#: ( 1 , 2 )  Pi (p3) S *  (123)  [H - E l  Y (123)  dr l  d r 2  d;, d S p h  = 0 .  (6) 

For simplicity we assume that the ground state function for the target is known 

exactly: 
i 

and 

E = E Z  t k 2 .  

We adopt a two-parameter ( l 1  ) variational trial function 

- a r l  - P r z  - P r 1  - = r 2 )  
'CI, ( 1 , 2 )  = N ( e  t e  
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for the target. Then on carrying out the angular and spin integrations (6) yields 

L p  f&) = l6 ( 2 4  7 r r Z N 2  t 1) [I-&, I f,(l) Z,,(123) d r l  d r 2  

where L (O) is the operator .e 

The direct and exchange potentials are 

-pr  -aar - a r l - /3 r2  1 2  
f ( P 2  r l  - 2P)e  

r:2 

1 k2 t 22 -SI}, 
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No account has been taken of the polarizability of the target in this model, 

so we replace L y  ' by 

L$ = Lle"' - 2 (Vd t vq) (13) 

where v d  and vq are potentials behaving as r -4  and r-6 respectively at large 

r. They are chosen in the Bethe-Reeh form12 

3 
9 20 vd (r) = -- {1 [I t 2u t 6u2 +- u3 

2u4 3 

l 6  t - y  t - Y 6  - - 1 7 1  y8 - - Y"] 
9 10 175 '- 13 5 13 5 

2 8 4  8 5  1 +6y3+-y 9 +-y  9 +-y6] 9 

I .  

8 
13 5 

t -yl0 E i  (- 2y) 
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where E i  (- u)  = -El (u)and El (u) is the exponential integra1,l3 

u = z  1 r ,  y = z 2 r  (15) 

The parameters z l ,  z 2  are chosen so that ( 9 / ~ ~ ) ~  = ad , ( ~ S / Z ~ ) ~  = aq, where 

ad, aq are the dipole and quadrupole polarizabilities of the target respectively. 

111. Numerical Methods 

The int eg rodif f e r enti a1 equation 

L$ ft ( r )  = R$ ( r )  

must be solved subject to the boundary conditions 

with 

and z o  = (z - 2). The quantity of interest is the non-couloumb part of the phase 

shift, st . We shall refer to it simply as  the phase shift (for the 4 th partial 

wave). 

The equation (10') was solved by a non-iterative method. Writing 
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where P, Q, R satisfy 

L'P = F (P) 

L'Q = F (Q) t c4 r'+l e-ar  

L t R  = F (R) t c4 r'+l e-p ' ,  c8 = 16-rr2N2 
(2.e t 1) 

and F (4) involves linear combinations of integrals over the range (0,r)  only, 

the parameters p, v may be determined in terms of certain infinite integrals 

once P(r), Q(r) and R(r) a r e  known. For He this procedure yields phase shifts 

identical to those obtained previously2 by an iterative method. The ordinary 

differential equations (18) were solved by a Fox-Goodwin predictor-corrector 

method. 

The solutions were normalized by the Str6mgren p r ~ c e d u r e ' ~  as given by 

Burgess. His procedure for determining the phase shift when a polarization 

potential is present may be extended easily to the case of a negative ion ( z o  = -1). 

At large r, 

where to sufficient accuracy 
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Defining 

p = I z o r l ,  P =  b o k /  

we have (the f sign being that of zo), 

1 1 - 1  
4; =x(p)'  f .en [ ( p p  t p x *  f l)/Pl - - p n  t u 4  t -  P 2 P 

JC 

with 

The polarization term is 

When c = 0 the c 0 s - l  term in (20 )  is replaced by 0.25 ( X* + P p ) - ' .  No special 

treatment of the quadrupole potential is required. Dipole and quadrupole polar- 

izabilities for H- a r e  given by Stewart.' The value of the quadrupole polariz- 

ability used is uncertain by *20%, but in view of its small effect, this is not 
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+ 
significant. The dipole polarizability used for Li is the Hartree-Fock value of 

Lahiri and Mukkerji16 and should be accurate; its quadrupole polarizability was 

taken as zero. The calculated phase shifts for H- are shown in Table 2. The 

program actually calculates tan 84 , and 84 (mod T ) .  The calculations indicated 

that i f  the phase shift was defined to go to zero in the high energy limit, then the 

s-wave phase shift must be chosen to be 7~ in the zero-energy limit. This was 

confirmed by comparing the numerical solution for k 2  = 0.05, 4, = 0 with the cor- 

responding pure couloumb solution. An extra node is present in the calculated 

solution at small r (21) . Physically this occurs because the incoming electron 

cannot enter the filled 1s-shell, and there is in our model, no bound (ls)?2s 

state of H--. A similar situation occurs for electron scattering by He,  but not 

for Li . In the latter case the ( l s f 2 s  state is the ground configuration of Li, 

and the zero energy s-wave phase shift is found to be 1.261 (see below). The 

s-wave phase shifts for  all these systems are shown in Fig. 1. In Fig. 2 we 

show tan 8, for H- both including (d + q)  and excluding (d) the quadrupole poten- 

tial. The local potentials occurring in Eq. (10') are shown in Fig. 3. They are 

strongly repulsive at large r but the effect of the attractive polarization poten- 

tials is to produce a broad positive maximum in V(r)  from r = 2.0 to r = 10.0 

with a maximum value of 0.2 Ry. The potential V(r)  then becomes strongly 

attractive for r 5 2.0 ao. There appears to be a possibility of trapping for low 

energy electrons. We therefore computed tan 6, for 0.05 5 k2 5 0.2 Ry at 

intervals of 0.01 in k2 (i.e. 0.136 eV). No evidence for an s-wave resonance 

+ 
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was observed, but in any event no resonance appreciably narrower than 0.1 eV 

would have been found. Herzenberg and Lau l 7  have used our model (with a dif - 

ferent form of polarization potential) to investigate s-wave scattering of slow 

electrons in He, and obtain a resonance by suitably modifying the strength of 

the exchange terms. Peterkop" has also reported an s-wave resonance in He, 

in a one channel model. 

+ 
Although the calculated results for He and Li a re  in excellent agreement 

with other calculations (and for He, with experiment), it might appear that the 

model would be less satisfactory for H-, with its extremely large polarizability. 

In fact the calculated phase shifts in He and Li are also dominated by the polar- 

izability potential (for small 8 and k2)  and are substantially in e r r o r  when 

polarization is neglected. We would therefore expect our H- results to be of 

comparable accuracy. 

4- 

The effect of introducing a quadrupole polarization is to slightly increase 

all the phase shifts, in general by less than 10%. The highest value of k2 at 

which the p-wave phase shift passes through 7r/2 increases from 2.0 to 2.45 

when aq changes from zero to 1300. For given k 2 ,  the phase shifts decrease 

slowly with .e(?, 2 1). 

+ 
Calculated phase shifts for  Li a re  displayed in Table 3. When the polar- 

ization potentials a r e  omitted the calculated values a r e  in very close agreement 
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with these obtained in a Hartree-Fock calculation.1° This confirms the result 

obtained for  He' * *  that provided the target ground state wave function used gives 

a binding energy at least as good as the Hartree-Fock value, its detailed behavior 

is not important in determining the low energy phase shifts. In particular it ap- 

pears  that short range 4 = 0 correlation in the target is not important. The Li 

p-wave phase shift obtained when polarization is included tends to a threshold 

value (0.170) in close agreement with that (0.188) obtained using the quantum 

defect method,lg but rather larger than the no-polarization value of 0.110. 

+ 

The zero energy s-wave phase shift is 1.261 where the quantum defect 

method gives 1.232 f 0.005. The d-wave phase shift at threshold, is like its 

quantum defect value, very small (approximately 3.8 X 

We have computed angular distributions of elastically scattered electrons 

for H-, where deviations from pure Couloumb scattering would be expected to 

be significant. 

The non-couloumb contribution f,(B) to the scattering amplitude f(0) may 

be written 

and because of the large polarizability of H- a comparatively large number of 

te rms  must be retained in the summation over /e in (22). We find that for 
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k2 5 3.0,  the sum has converged to better than 1% if it is cut off at 4 = 30. For 

4 1 4 the exchange terms in (10') may be ignored; phase shifts are  then obtained 

from the suitably normalized solutions of 

L 4 ( r )  f 4 ( r )  = 0. (23) 

In table (2b) we give phase shifts in this approximation for 4 = 4 (1) 10  at 

k2 = 0.5, 0.75, 1.0, 3.0. 

Rather than displaying the scattering intensity I( 8) = I f(8) 1 it is convenient 

first to show R(8), the ratio of I(8) to  the pure coloumb intensity IC ( 8 ) .  Writing 

a = l / k  we have2' 

R ( 8 , k 2 )  = 11 + N I 2  

with (for H-), 

2 i 8 4  2 i (cr4 - co ) N=-*kshZ:{exp ialntin2:)} 2 (24t1) e s in6  4 e p4(cOs e )  
.e= 0 

(25) 

The calculated values of R(8 ,  k2) for k2 = 0.50, 0.75, 1.0, 3.0 a re  shown 

in Fig. 4. 

The most significant features a re  the sharp dip near 8 = 0.4, the oscilla- 

tions in the range 1.0 5 8 5 2.5 and the strong enhancement in the backward 

direction for  l? = 0.5. The fine detail of the calculated oscillations in R(B, k 2 )  

at intermediate angles may not be significant. 
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In Figs. 5a, 5b we show I(0) and I,(e) for R2 = 0.5 and 1.0 over the angular 

range 0.3 1. e 5 77. The calculated intensity is a factor of five lower than the 

couloumb intensity at 40°, but for k2 = 0.5 it is a factor of four higher in the 

backward direction. 
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Figure Captions 

Fig. 1 Calculated s-wave phase shift for elastic scattering of slow electrons 

by the two electron systems indicated. 

Fig. 2 Tan 6 ,  (k 2, for elastic scattering by H-. Full curve aq = 0, dashed 

curve a # 0. 
9 

Fig. 3 The local potentials occurring in Eq. (10') for Z = 1 (H-). 

Fig. 4 Calculated values of R( e k*), the ratio of I(8) to the Couloumb 

intensity I ,  ( e )  for H-, (1) kz = 0.5 (2) k2 = 0.75 (3) k2 = 1.0 

(4) k2 = 3.0. 

Fig. 5 Calculated differential cross sections for scattering by H-. The full 

curve is Ic(0), the dashed curve I(@). (a) k2 = 0.5, @) k2 = 1.0. 



Table 1 

+ 
Parameters for H-, ~i 

a P ad aa z zo 
- 

H 1.04 0.2808 203 1300 1 -1 

Li+ 3.295 2.079 0.19 0 3 -t1 
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k* 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.25 

0.50 

0.75 

1.0 

2.0 

3.0 

Table 2a 

S-Wave Phase Shifts for H- 

tan 770 

d d + q  

8.19, -3 8.22,-3 

1.26,-2 1.27,-2 

1.84,-2 1.85,-2 

2.51, -2 2.54, -2 

3.26, -2 3.31, -2 

4.06, -2 4.13, -2 

2.22, -1 2.50,-1 

4.71,-1 5.59,-1 

3.49,-1 4.20,-1 

1.74,-1 2.30,-1 

-3.49,-1 -3.07 ,-1 

-7.43, -1 -6.97 ,-1 

70 

d + q  

3.150 

3.154 

3.160 

3.167 

3.175 

3.183 

3.389 

3.650 

3.540 

3.369 

2.844 

2.510 

(d indicates dipole potential only 
d + q indicates dipole plus quadrupole potentials) 
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k2 

0.10 

0.55 

0.20 

0.25 

0.50 

0.75 

1 .o 

1.5 

2.0 

3.0 

Table 2b 

Calculated H- Phase Shifts, Notation as in Table 2a 

4 = 1  

d d + q  

4.32,-2 4.38,-2 

1.49 ,-1 1.53 .-1 

3.72,-1 4 .OO ,-1 

7.28,-1 8.12,-1 

1.71 1.82 

1.78 1.86 

1.75 1.82 

1.65 1.70 

1.57 1.61 

1.44 1.46 

.e = 2  

d d + q  

2.95,-2 2.99,-2 

7.41 ,-2 8.08,-2 

1.59,-1 1.63,-1 

2.64 , -1 2.76,-1 

8.13,-1 8.78,-1 

1.04 1.11 

1.11 1 .is 

1.12 1.17 

1.09 1.14 

1.03 1.07 
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Table 2c 

Dipole Plus Quadrupole Potentials Only 

4 = 4  
k 2  4 = 3  4 = 4  no exchange 

0.25 0.139 0.0798 - 

0.5 0.400 0.221 - 

0.75 0.667 0.403 0.390 

1.0 0.768 0.503 0.497 

1.5 0.858 0.624 - 

2.0 0.869 0.669 - 

3.0 0.846 0.687 - 



Table 2d 

Phase Shifts for H-, 8 >, 4, no exchange 

(dipole plus quadrupole potential only) 

5 6 7 8 9 10 

0.75 

1 .O 

3 .O 

0.390 0.244 0.158 0.107 0.075 0.0540 0.0403 

0.497 0.329 0.221 0.152 0.107 0.0775 0.0577 

0.687 0.552 0.447 0.360 0.288 0.231 0.185 
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k2 

0 

0.04 

0.09 

0.16 

0.25 

0.36 

0.49 

0.64 

0.81 

1 .0  

Table 3 

+ 
Phase Shifts for Li , Dipole Potential Only 

8= 0 

(1.261) 

1.258 

1.255 

1.248 

1.241 

1.230 

1.221 

1.209 

1.194 

1.178 

4 = 1  

(0.170) 

0.173 

0.177 

0.182 

0.189 

0.195 

0.202 

0.210 

0.217 

0.224 

4 =l ,H.F .  

(0.110) 

0.113 

0.117 

0.120 

0.126 

0.132 

0.140 

0.147 

0.153 

0.161 

8 = 1 , a d = 0  . e = 2  

- (0.0038) 

- 0.0044 

- 0.0052 

0.122 0.0063 

- 0.0074 

0.133 0.0088 

0.140 0.0108 

0.146 0.0135 

- 0.0157 

- 0.0182 

(1) Values for k 2  = 0 a r e  obtained by graphical extrapolation. 
( 2 )  For the p-wave phase shift the successive columns show 

the results (i) in our  model with ad = 0.19, (ii) in a Hartree- 
Fock calculation,10 (iii) in our model with ad = 0. 
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Figure 4. Calculated values of R (8, k2), the ratio of I(8) to the Couloumb intensity 
I C  ( 8 )  for H-, (1) k2 = 0.5 (2) k 2  = 0.75 (3) k2 = 1.0 (4) k2 = 3.0. 
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k* =0.50 

8 (radians) 
- 

Figure 5a.  Calculated differential cross sections for scattering by H . The full curve i s  
IC  ( e ) ,  the dashed curve I ( @ ) .  (a) k2 = 0.5, Kb) k2 1.0. 
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k* = 1.0 

I 
3.3 1 .o 2.0 2.3 3.0 

8 (radians) 

Figure 5b. Calculated differential cross sections for scattering by H . The full curve is 
- 

I C  (e) ,  the dashed curve I(@). (a) k2 = 0.5, (b) k2 = 1.0. 
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